GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics

نویسنده

  • Robert Engle
چکیده

he great workhorse of applied econometrics is the least squares model. This is a natural choice, because applied econometricians are typically called upon to determine how much one variable will change in response to a change in some other variable. Increasingly however, econometricians are being asked to forecast and analyze the size of the errors of the model. In this case, the questions are about volatility, and the standard tools have become the ARCH/ GARCH models. The basic version of the least squares model assumes that the expected value of all error terms, when squared, is the same at any given point. This assumption is called homoskedasticity, and it is this assumption that is the focus of ARCH/ GARCH models. Data in which the variances of the error terms are not equal, in which the error terms may reasonably be expected to be larger for some points or ranges of the data than for others, are said to suffer from heteroskedasticity. The standard warning is that in the presence of heteroskedasticity, the regression coefficients for an ordinary least squares regression are still unbiased, but the standard errors and confidence intervals estimated by conventional procedures will be too narrow, giving a false sense of precision. Instead of considering this as a problem to be corrected, ARCH and GARCH models treat heteroskedasticity as a variance to be modeled. As a result, not only are the deficiencies of least squares corrected, but a prediction is computed for the variance of each error term. This prediction turns out often to be of interest, particularly in applications in finance. The warnings about heteroskedasticity have usually been applied only to cross-section models, not to time series models. For example, if one looked at the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility

I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...

متن کامل

MULTIVARIATE GARCH MODELS : A SURVEY forthcoming in Journal of Applied Econometrics

This paper surveys the most important developments in multivariate ARCH-type modelling. It reviews the model specifications, the inference methods, and identifies likely directions of future research.

متن کامل

On the Stationarity of Markov-Switching GARCH Processes

GARCH models with Markov-switching regimes are often used for volatility analysis of …nancial time series. Such models imply less persistence in the conditional variance than the standard GARCH model, and potentially provide a signi…cant improvement in volatility forecast. Nevertheless, conditions for asymptotic wide-sense stationarity have been derived only for some degenerated models. In this...

متن کامل

ARCH/GARCH Models in Applied Financial Econometrics

Volatility is a key parameter used in many financial applications, from derivatives valuation to asset management and risk management. Volatility measures the size of the errors made in modeling returns and other financial variables. It was discovered that, for vast classes of models, the average size of volatility is not constant but changes with time and is predictable. Autoregressive conditi...

متن کامل

Improving GARCH Volatility Forecasts

Many researchers use GARCH models to generate volatility forecasts. We show, however, that such forecasts are too variable. To correct for this, we extend the GARCH model by distinguishing two regimes with different volatility levels. GARCH effects are allowed within each regime, so that our model generalizes existing regime-switching models that allow for ARCH terms only. The empirical applica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001